360度无死角、近距离看「CNN」训练,是种什么体验?网友:美得不真实

萧箫 鱼羊 发自 凹非寺
量子位 报道 | 公众号 QbitAI

做计算机视觉,离不开CNN。 [原创文章:www.11jj.com]

可是,卷积、池化、Softmax……究竟长啥样,是怎样相互连接在一起的? [本文来自:www.11jj.com]

对着代码凭空想象,多少让人有点头皮微凉。于是,有人干脆用Unity给它完整3D可视化了出来。

还不光是有个架子,训练过程也都呈现得明明白白。

比如随着epoch(迭代次数)的变化,训练过程中各层出现的实时变化。

为了能更清楚地展示网络细节,用户还可以在其中自由地折叠、扩展每个层。

比如将特征图在线性布局和网格布局之间转换。

折叠卷积层的特征图输出。

对全连接层进行边绑定(edge bunding)等等。

这样的可视化图像,可以通过加载TensorFlow的检查点来构建。

也可以在Unity编辑器中设计。

是不是有点鹅妹子嘤那感觉了?

最近,这个项目又在社交媒体上火了起来。

网友们纷纷表示:

“要是能在训练的时候看到这个过程,再长时间我也能忍啊。”

“求开源。”

该项目的作者,是一位来自维也纳的3D特效师。

据他介绍,之所以创建这样一个CNN可视化工具,是因为他自己初学神经网络时,经常觉得很难理解卷积层之间是如何相互连接,又如何与不同类型的层连接的。

而该工具的主要功能包括,卷积、最大池化和完全连接层的可视化表示,以及各种能实现更清晰可视化的简化机制等等。

总而言之,就是想让初学者通过最直观的方式,来get到CNN的重点。

如何用Unity搞出一个3D网络

在正式上手Unity前,作者先在Houdini软件中,搭建了一个可视化的3D网络原型。

也就是说,先给Unity版3D网络提供一个搭建思路,提前准备好实现展示卷积计算的方法、特征图的形状、边绑定的效果等问题。

它的节点编辑器长这样:

然后,就可以在Unity上搭建3D神经网络了。

首先,需要预设好神经网络的“形状”。

由于之前并没有用过Unity,作者先学习了着色器和过程式几何相关的知识。

这里面,作者发现了一些局限性,他采用的是Unity为着色器开发的语言Shaderlab,这个语言无法使用着色变化,只有对语义进行预定义的变量,才能让它在顶点、几何和像素着色器之间传递。

而且,它无法任意分配顶点属性,只有位置、颜色、UV等预定义属性。(可能这也是3D网络无法实时改变颜色的原因之一)

在研究了一些实例化(instancing)相关的概念后,作者计划采用几何着色器的方法生成神经网络的连线。其中起点和终点被传递到顶点着色器,并直接转发到几何着色器。

这些线,最多可以由120个顶点组成,因为Unity允许的几何着色器能创建的变量的标量浮点数为1024。

设计后的网络形状,大致长这样:

然后,就是从模型的TensorFlow代码中,生成对应的3D神经网络图像。

其中,Tensorflow-native.ckpt格式的文件,需要存储重构模型图所需的数据、二进制的权重读取和激活值,以及特定层的名字。

以Cifar10-greyscale数据集为例,需要编写一个检查点(checkpoint)文件,以及设置随即初始化的权重。

在那之后,需要加载这些检查点文件、启动TensorFlow会话,输入训练示例,以便查询每一层的激活函数。

然后编写一个json文件,存储每一层的形状、名称、权重和激活函数,便于读取。然后使用权重值,将颜色数据分配给各层的Unity Mesh。

最终搞出来的效果,还是不错的:

作者还录了个开发视频,在文末可以找到地址。

相关研究还不少

事实上,此前已经有不少学者,进行过神经网络可视化的研究。

例如,去年5月,一位中国博士就可视化了卷积神经网络,将每一层的变化都展示得非常清楚,只需要点击对应的神经元,就能看见它的“操作”。

这是用TensorFlow.js加载的一个10层预训练模型,相当于在浏览器上就能跑CNN模型,也可以实时交互,显示神经元的变化。

不过,这还是个2D的项目。

目前,也已经有人像上面那个神经网络模型一样,做出了3D的可视化神经网络:

这个项目,同样用到了边绑定、光线追踪等技术,与特征提取、微调和归一化相结合,将神经网络可视化。

这项项目希望能借由这些技术,来估计神经网络中不同部分的重要性。

为此,作者将神经网络的每一部分都用不同的颜色来表示,根据节点和节点在网络中的重要性,来预测它们之间的关联性。

大致的处理过程是这样的:

如果对于这类3D神经网络可视化感兴趣,可以在文末找到对应的开源项目地址。

作者介绍

Stefan Sietzen,现居维也纳,此前曾是个3D视觉方向的自由职业者。

目前,他在维也纳工业大学读硕,对视觉计算(visual computing)非常感兴趣,这个3D神经网络,就是他在硕士期间做的项目之一。

开发过程:
https://vimeo.com/stefsietz

已开源的3D神经网络项目:
https://github.com/julrog/nn_vis

参考链接:
https://www.reddit.com/r/MachineLearning/comments/leq2kf/d_convolution_neural_network_visualization_made/
https://mp.weixin.qq.com/s/tmx59J75wuRii4RuOT8TTg
https://vimeo.com/stefsietz
http://portfolio.stefansietzen.at/
http://visuality.at/vis2/detail.html


本文系网易新闻•网易号特色内容激励计划签约账号【量子位】原创内容,未经账号授权,禁止随意转载。

加入AI社群,拓展你的AI行业人脉

量子位「AI社群」招募中!欢迎AI从业者、关注AI行业的小伙伴们扫码加入,与50000+名好友共同关注人工智能行业发展&技术进展

现在加入,还可参与2.9-2.11社群内抽奖哦,扫码添加小助手入群▽

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见~


自媒体微信号:11jj扫描二维码关注公众号
爱八卦,爱爆料。
小编推荐
  1. NO.1 AI技术下的娱乐圈女星全都.avi了

    这是娱乐圈行动派——去酱 的第32篇《我去》 今天,我看了好几个女星的小黄片(封面) 这两天,有手艺人把杨幂的五官换到了《射雕英雄传》的黄蓉

  2. NO.2 日本风俗放飞记(一)东京泡泡浴

    副标题#e# 这篇日本放飞的攻略质量还是很不错的,很值得一读,作者还在陆续写,之后的行程会包括东京和大阪的很多不同业态,很有意思,推荐给

  3. NO.3 2019每日胎神方位(每日胎神占什么位置)

    胎神占方 古老的传说里,一直有所谓的胎神存在,农历(黄历)上可见胎神的项目,民间习俗相信胎儿生命受胎神支配,于是诸多禁忌衍生,多半在限

  4. NO.4 2019年阿里巴巴最新股权结构图解曝光,来看看马云的股权有多少?

    阿里的股权结构与合伙人制度,一直都是各行各业的典范。 2019年7月30日,阿里巴巴重新更改股权结构。 报告显示: 阿里高管和董事合计持股降至

  5. NO.5 让子弹飞结局什么意思(让子弹飞弟兄七人暗喻)

    比如开场时一群马拉着一辆火车在飞驰,汤师爷一伙人在车上吃火锅,他到底想表达什么? 文|蟑教授的茶炉 张麻子和黄四郎早就认识 为什么用马拉

  6. NO.6 教你写出牛逼团队介绍文案(附:团队介绍创意简短50字范文)

    团队介绍(一) 我们的制作团队不光在技术上处于行业前端,我们更注重将客户的产品表达的清楚与准确,我们大多是理科出身,在机械、游戏、电子

  7. NO.7 剑三怎么抓马地点(剑三重制版马驹刷新点)

    龙子和麟驹天天的刷新纪律是 早上7点到11点是一轮 正午11点到15点是一轮 下昼15点到19点是一轮 晚上19点到23点是一轮 凌晨23点到03点是一轮 凌晨03点

  8. NO.8 单一窗口申报系统(单一窗口怎么打报关单)

    而使用单一窗口后,企业只需要在一个窗口、一次录入,就能办完所有申报流程,从申报到放行结关最快只需2小时。 国际贸易单一窗口标准版共包括

Copyright2018.依依自媒体资讯站,让大家及时掌握各行各业第一手资讯新闻!